Quantum mechanics. Department of physics, 6th semester.

Lesson N_{24} . Mathematical tools of quantum mechanics: calculating average values of operators. Elements of representation theory. Discrete and continuous representations.

1. Check home task.

<u>**Task 1.**</u> Find a Hermitian conjugated operator to the operator $e^{i\varphi\hat{\sigma}_j}$.

<u>Tasks 2-3.</u> Find eigenfunctions and eigenvalues of matrices $\hat{\sigma}_{+} = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix}; \quad \hat{\sigma}_{-} = \begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}.$

2. Calculating average values of operators.

Def.:
$$\overline{A} = (\psi, \hat{A}\psi), \quad \overline{A^2} = (\psi, \hat{A}^2\psi),$$

 $\overline{\Delta A^2} = \overline{(\hat{A} - \overline{A})^2} = \overline{A^2} - (\overline{A})^2, \quad \delta A = \sqrt{\overline{\Delta A^2}}.$

Task 4. In described with wave function state

$$\psi(x) = C \exp\left[\frac{ip_0 x}{\hbar} - \frac{(x - x_0)^2}{2a^2}\right],$$

where p_0, x_0, a – real-valued parameters, find distribution function in the coordinates of the particle. Define $\overline{x}, \overline{x^2}, \overline{p}, \overline{p^2}, \overline{\Delta x^2}, \overline{\Delta p^2}, \delta x, \delta p, \delta x \cdot \delta p$. (HKK Nº 1.19)

As reference:
$$\int_{-\infty}^{\infty} e^{-\alpha x^2} dx = \sqrt{\frac{\pi}{\alpha}}, \quad \alpha > 0.$$

- 3. Elements of representation theory.
- 3.1 Discrete representation.

$$\hat{L}^{\dagger} = \hat{L}, \quad \hat{L}\psi_n = \lambda_n \psi_n; \quad (\psi_m, \psi_n) = \delta_{mn}.$$

$$\begin{cases} \psi(x) = \sum_n C_n \psi_n; \\ C_n = (\psi_n, \psi) = \int_{-\infty}^{+\infty} \psi_n^*(x)\psi(x)dx; \end{cases} \qquad \begin{cases} \sum_n \psi_n^*(x')\psi_n(x) = \delta(x - x'); \\ \int_{-\infty}^{\infty} \psi_m^*(x)\psi_n(x)dx = \delta_{mn}. \end{cases}$$

 $\{C_n\}$ – function $\psi(x)$ in discrete *L*-representation,

$$A_{mn} = \left(\psi_m, \hat{A}\psi_n\right) = \int_{-\infty}^{+\infty} \psi_m^*(x) \hat{A}\psi_n(x) dx \text{ is an operator } \hat{A} \text{ matrix in discrete } L$$

representation.

$$L_{mn} = \lambda_n \delta_{mn} \text{ - operator } \hat{L} \text{ matrix in own representation.}$$
$$\hat{A}\psi(x) = \tilde{\psi}(x) \rightarrow \sum_n A_{mn}C_n = \tilde{C}_m, \quad C_n = (\psi_n, \psi), \quad \tilde{C}_m = (\psi_n, \tilde{\psi})$$

<u>**Task 5.**</u> Rewrite Pauli's matrices $\hat{\sigma}_x, \hat{\sigma}_y, \hat{\sigma}_z$ in representation of eigenfunctions of the matrix $\hat{\sigma}_x, \hat{\sigma}_y$.

3.2. Continuous representation.

$$\hat{L}^{\dagger} = \hat{L}, \quad \hat{L}\psi_{\lambda} = \lambda\psi_{\lambda}; \quad (\psi_{\lambda}, \psi_{\lambda'}) = \delta(\lambda - \lambda')$$

$$\begin{cases} \psi(x) = \int_{-\infty}^{+\infty} C(\lambda)\psi_{\lambda}(x)d\lambda \\ C(\lambda) = (\psi_{\pi}, \psi) = \int_{-\infty}^{+\infty} \psi_{\lambda}^{*}(x)\psi(x)dx; \end{cases}$$

$$\begin{cases} \int_{-\infty}^{+\infty} \psi_{\lambda}^{*}(x')\psi_{\lambda}(x)d\lambda = \delta(x - x'); \\ \int_{-\infty}^{+\infty} \psi_{\lambda'}^{*}(x)\psi_{\lambda}(x)dx = \delta(\lambda - \lambda'); \end{cases}$$

 $C(\lambda)$ – function $\psi(x)$ in discrete L-representation,

$$A(\lambda,\lambda') = \left(\psi_{\lambda}, \hat{A}\psi_{\lambda'}\right) = \int_{-\infty}^{+\infty} \psi_{\lambda}^{*}(x) \hat{A}\psi_{\lambda'}(x) dx \text{ is a } \hat{A} \text{ operator kernel in continuous}$$

L-representation

 $L(\lambda, \lambda') = \lambda \delta(\lambda - \lambda')$ is a \hat{L} kernel in own representation.

$$\hat{A}\psi(x) = \tilde{\psi}(x) \quad \to \quad \int_{-\infty}^{+\infty} A(\lambda,\lambda')C(\lambda')d\lambda' = \tilde{C}(\lambda), \quad C(\lambda) = (\psi_{\lambda},\psi), \quad \tilde{C}(\lambda') = (\psi_{\lambda'},\tilde{\psi}).$$

Operator \hat{L} in its own continuous representation is the multiplication by $\hat{\lambda}$ $\hat{L}C(\hat{\lambda}) = \hat{\lambda}C(\hat{\lambda}).$

4. Dirac delta-function is the kernel of the unity operator.

Properties of the Dirac delta-function

$$Def: \quad \psi(a) = \int_{-\infty}^{+\infty} \psi(x)\delta(x-a)dx;$$
$$\delta(-x) = \delta(x); \quad \int_{-\infty}^{+\infty} \delta(x)dx = 1; \quad \delta(\alpha x) = \frac{1}{|\alpha|}\delta(x);$$
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx}dx = \delta(k); \quad \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{ikx}dk = \delta(x).$$

<u>**Tasks 6-7.**</u> Find position \hat{x} and momentum \hat{p} operators in *p*-representation. As reference: momentum operator $\hat{p} = -i\hbar \frac{d}{dx}$, normalized on δ -function Eigenfunction has the form

$$\psi_p(x) = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{ipx}{\hbar}}$$

5. <u>Quiz</u> (~ 20 minutes). Test contains two tasks: 1^{st} task is 10 points, 2^{nd} task - 10 points, to sum up maximum <u>20 points</u>.

Home task: HKK №№ 1.19 (to finish), 1.22-1.25, 1.30, 1.42, 1.44, 1.45, 1.46*, 1.47*, 1.48*, 1.54-1.59, 1.67*, Hr. № 32.

EK – Elyutin P.V., Krivchenko V.D. Quantum mechanics 1976 HKK- Halitskii E.M., Karnakov B.M., Kohan V.I. Problems in Quantum Physics, 1981

Hr. - Hrechko, Suhakov, Tomasevich, Fedorchenko Collection of theoretical physics problems, 1984

 $^{*)}$ – tasks for students of group $\Phi037$